首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2292篇
  免费   151篇
  国内免费   1篇
  2021年   23篇
  2020年   18篇
  2019年   24篇
  2018年   32篇
  2017年   19篇
  2016年   55篇
  2015年   79篇
  2014年   97篇
  2013年   110篇
  2012年   128篇
  2011年   126篇
  2010年   88篇
  2009年   85篇
  2008年   133篇
  2007年   130篇
  2006年   115篇
  2005年   113篇
  2004年   90篇
  2003年   101篇
  2002年   94篇
  2001年   58篇
  2000年   49篇
  1999年   39篇
  1998年   48篇
  1997年   34篇
  1996年   27篇
  1995年   30篇
  1994年   25篇
  1993年   26篇
  1992年   43篇
  1991年   27篇
  1990年   22篇
  1989年   19篇
  1988年   25篇
  1987年   15篇
  1986年   16篇
  1985年   25篇
  1984年   24篇
  1983年   18篇
  1982年   13篇
  1981年   13篇
  1980年   17篇
  1979年   25篇
  1978年   15篇
  1977年   15篇
  1976年   11篇
  1975年   14篇
  1974年   9篇
  1973年   12篇
  1972年   14篇
排序方式: 共有2444条查询结果,搜索用时 15 毫秒
81.
The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays β-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments.  相似文献   
82.
83.
The three main Lena Delta terraces were formed during different stages of the late Quaternary. While only the first floodplain terrace is connected with active deltaic processes, the second and third terraces, which dominate the western part of the delta, are erosional remnants of arctic paleolandscapes affected by periglacial processes. The landscape dynamics of the second and the third terraces, and their relationship to each other, are of particular importance in any effort to elucidate the late Quaternary paleoenvironment of western Beringia.Multidisciplinary studies of permafrost deposits on the second terrace were carried out at several sites of the Arga Complex, named after the largest delta island, Arga–Muora–Sise. The frozen sediments predominantly consist of fluvial sands several tens of meters thick, radiocarbon-dated from > 52 to 16 kyr BP. These sands were deposited under changing fluvial conditions in a dynamic system of shifting river channels, and have been additionally modified by synsedimentary and postsedimentary cryogenesis. Later thermokarst processes affected this late Pleistocene fluvial landscape during the Lateglacial and the Holocene. In addition, eolian activity reworked the fluvial sands on exposed surfaces at least since the Lateglacial, resulting in dune formation in some areas. Contrary to the Arga Complex, the third terrace is mainly composed of polygenetic alluvial and proluvial ice-rich permafrost sequences (Ice Complex deposits) radiocarbon-dated from 50 to 17 kyr BP which cover older fluvial sand units luminescence-dated to about 100–50 kyr BP. Paleoecological records reflect tundra-steppe conditions that varied locally, depending on landscape dynamics, during the Marine Isotope Stage (MIS) 4 and 3 periods, and a persistent change to shrub and arctic tundra during Lateglacial and Holocene periods.The study results indicate a continuous fluvial sedimentation environment for the Laptev Sea shelf in the region of the second Lena Delta terrace during the late Pleistocene, and confirm the presence of a dynamic channel system of the paleo-Lena River that flowed at the same time as the nearby subaerial Ice Complex deposits were being formed.  相似文献   
84.
The aim of this study was to examine the effects of a QTL in different genetic backgrounds. A QTL affecting body mass on chromosome 6 was identified in an F2 cross between two lines of mice that have been divergently selected for this trait. The effect of the QTL on mass increased between 6 and 10 weeks of age and was not sex-specific. Body composition analysis showed effects on fat-free dry body mass and fat mass. To examine the effect of this QTL in different genetic backgrounds, the high body mass sixth chromosome was introgressed into the low body mass genetic background and vice versa by repeated marker-assisted backcrossing. After three generations of backcrossing, new F2 populations were established within each of the introgression lines by crossing individuals that were heterozygous across the sixth chromosome. The estimated additive effect of the QTL on 10-week body mass was similar in both genetic backgrounds and in the original F2 population (i.e., ~0.4 phenotypic standard deviations); no evidence of epistatic interaction with the genetic background was found. The 95% confidence interval for the location of the QTL was refined to a region of approximately 7 cM between D6Mit268 and D6Mit123.  相似文献   
85.
Experimental ecology at deep-sea hydrothermal vents: a perspective   总被引:1,自引:0,他引:1  
In situ and laboratory experiments conducted over the past quarter of a century have greatly increased our understanding of the ecology of deep-sea hydrothermal systems. Early experiments suggested that chemosynthetic primary production constituted the principal source of organic matter for biological communities associated with vents, although subsequent studies have revealed many complexities associated with interactions between microbes and higher organisms inhabiting these ecosystems. A diversity of host-microbial symbiont relationships has been identified and experimental studies have revealed the exquisite physiological adaptations within the giant tubeworm, Riftia pachyptila, for the uptake, fixation, and assimilation of carbon. In vitro experiments demonstrated the unusual sulfide binding properties of tubeworm hemoglobin that prevent inhibition of the cytochrome-c oxidase enzyme system during transport of sulfide to symbiont-bearing tissues. Studies of respiration and growth of several species of vent organisms conducted over the past two decades transformed earlier views that low metabolism and slow growth are characteristics of all organisms inhabiting all deep-sea environments. Results of recent experiments suggest that metabolic rates correlate with the degree of mobility of the organisms rather than with any specific attribute of the deep-sea environment itself, and growth rates of certain vent organisms (e.g., R. pachyptila) were found to be among the highest in any marine environments. While extreme thermal tolerance has been suggested as characteristic of certain vent fauna (e.g., alvinellid polychaetes and alvinocarid shrimp), the majority of vent metazoans live at temperatures below 20 °C and additional experiments are necessary to reconcile field experiments documenting thermal tolerance in situ, thermal tolerance in vivo, and thermal sensitivity of biochemical constituents of vent organisms. Transplantation and clearance experiments, as well as in situ characterization of vent fluid chemistry, have greatly increased our understanding of organism–environment interactions. Early analyses of metazoan egg size and larval morphology, coupled with in vivo larval culture experiments, available physical oceanographic data, and genetic studies of gene flow, have contributed greatly to our understanding of mechanisms of dispersal between widely separated vent sites. The documentation of invertebrate colonization and succession of new vents following a volcanic eruption, and a series of manipulative field experiments, provide considerable insights into the relative roles of abiotic conditions and biotic interactions in structuring vent communities. Recent and emerging technological developments, such as in situ chemical analyzers, observatory approaches, and laboratory-based pressure culture systems, should provide invaluable new experimental tools for tackling many remaining questions concerning the ecology of deep-sea hydrothermal systems.  相似文献   
86.
The COVID‐19 pandemic caused by SARS‐CoV‐2 has applied significant pressure on overtaxed healthcare around the world, underscoring the urgent need for rapid diagnosis and treatment. We have developed a bacterial strategy for the expression and purification of a SARS‐CoV‐2 spike protein receptor binding domain (RBD) that includes the SD1 domain. Bacterial cytoplasm is a reductive environment, which is problematic when the recombinant protein of interest requires complicated folding and/or processing. The use of the CyDisCo system (cytoplasmic disulfide bond formation in E. coli) bypasses this issue by pre‐expressing a sulfhydryl oxidase and a disulfide isomerase, allowing the recombinant protein to be correctly folded with disulfide bonds for protein integrity and functionality. We show that it is possible to quickly and inexpensively produce an active RBD in bacteria that is capable of recognizing and binding to the ACE2 (angiotensin‐converting enzyme) receptor as well as antibodies in COVID‐19 patient sera.  相似文献   
87.
The reaction of [(η4-1,5-C8H12)2Ir2(μ-Cl)2] with 2-di-t-butylphosphino-2′-methylbiphenyl (t-Bu2PbiphMe) in the presence of AgBF4 afforded the dichlorido-bridged Ir–Ag complex [(η4-1,5-C8H12)Ir(μ-Cl)2Ag(t-Bu2PbiphMe)] (1) which was fully characterized by a single crystal X-ray diffraction study. Sequential treatment of the diiridium precursor first with the silver salt and then with the phosphine yielded cyclometalated [(η4-1,5-C8H12)Ir(t-Bu2PbiphMe–H+)] (2). Detailed DFT calculations gave evidence that the phosphine ligand of 2 forms a strained four-membered iridaheterocycle through orthometalation rather than a sterically congested six-membered chelate structure through C–H activation on the remote phenyl ring. The phosphonium salt [t-Bu2P(H)biphMe]BF4 was isolated as a by-product of the preparations of 1 and 2; its crystal structure was determined.  相似文献   
88.
Combination of (1S,2S)-cyclopentanediylbis(diphenylphosphine) with [Ru(η4-C8H12){η3-(CH2)2CMe}2] afforded the chelate complex [Ru{η3-(CH2)2CMe}2{(1S,2S)-C5H8(PPh2)2}] (1), which gave (OC-6-13)-[RuCl2{(1S,2S)-C5H8(PPh2)2}{(1S,2S)-Ph2PCH(Ph)CH(Me)NH2}] (2) upon reaction with methanolic HCl in acetone, followed by the addition of the β-aminophosphine in DMF. The (P  N)2-chelated complexes (OC-6-13)-[RuCl2{(1S,2S)-Ph2PCH(Ph)CH(Me)NH2}2] (3) and (OC-6-13)-[RuCl2{(1R,2S)-Ph2PCH(Ph)CH(Me)NH2}2] (4) resulted from RuCl3 · 3H2O and the P,N ligands under reducing conditions. The crystal structures of 3 and 4 were determined by single-crystal X-ray diffraction. Following activation by KOBu-t in isopropanol, compounds 24 catalyzed the enantioselective transfer hydrogenation of acetophenone with i-PrOH as the hydrogen source as well as the direct hydrogenation of the ketone by H2 in low to moderate e.e. (up to 67%).  相似文献   
89.
As surface temperatures are expected to rise in the future, ice‐rich permafrost may thaw, altering soil topography and hydrology and creating a mosaic of wet and dry soil surfaces in the Arctic. Arctic wetlands are large sources of CH4, and investigating effects of soil hydrology on CH4 fluxes is of great importance for predicting ecosystem feedback in response to climate change. In this study, we investigate how a decade‐long drying manipulation on an Arctic floodplain influences CH4‐associated microorganisms, soil thermal regimes, and plant communities. Moreover, we examine how these drainage‐induced changes may then modify CH4 fluxes in the growing and nongrowing seasons. This study shows that drainage substantially lowered the abundance of methanogens along with methanotrophic bacteria, which may have reduced CH4 cycling. Soil temperatures of the drained areas were lower in deep, anoxic soil layers (below 30 cm), but higher in oxic topsoil layers (0–15 cm) compared to the control wet areas. This pattern of soil temperatures may have reduced the rates of methanogenesis while elevating those of CH4 oxidation, thereby decreasing net CH4 fluxes. The abundance of Eriophorum angustifolium, an aerenchymatous plant species, diminished significantly in the drained areas. Due to this decrease, a higher fraction of CH4 was alternatively emitted to the atmosphere by diffusion, possibly increasing the potential for CH4 oxidation and leading to a decrease in net CH4 fluxes compared to a control site. Drainage lowered CH4 fluxes by a factor of 20 during the growing season, with postdrainage changes in microbial communities, soil temperatures, and plant communities also contributing to this reduction. In contrast, we observed CH4 emissions increased by 10% in the drained areas during the nongrowing season, although this difference was insignificant given the small magnitudes of fluxes. This study showed that long‐term drainage considerably reduced CH4 fluxes through modified ecosystem properties.  相似文献   
90.
Distinct microbial habitats on glacial surfaces are dominated by snow and ice algae, which are the critical players and the dominant primary colonisers and net producers during the melt season. Here for the first time we have evaluated the role of these algae in association with the full microbial community composition (i.e., algae, bacteria, archaea) in distinct surface habitats and on 12 glaciers and permanent snow fields in Svalbard and Arctic Sweden. We cross‐correlated these data with the analyses of specific metabolites such as fatty acids and pigments, and a full suite of potential critical physico‐chemical parameters including major and minor nutrients, and trace metals. It has been shown that correlations between single algal species, metabolites, and specific geochemical parameters can be used to unravel mixed metabolic signals in complex communities, further assign them to single species and infer their functionality. The data also clearly show that the production of metabolites in snow and ice algae is driven mainly by nitrogen and less so by phosphorus limitation. This is especially important for the synthesis of secondary carotenoids, which cause a darkening of glacial surfaces leading to a decrease in surface albedo and eventually higher melting rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号